Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
Neurol India ; 72(1): 124-128, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38443013

RESUMO

Chromosomal deletion and duplication syndromes can lead to intellectual disability, autism, microcephaly, and poor growth. Usually manifestations of duplication syndromes are milder than that of the deletion syndromes. With the availability of tests for analysis of copy number variants, it is possible to identify the deletion and duplication syndromes with greater ease. We report 32 cases of chromosomal duplication syndromes, identified in children presenting with developmental delay, intellectual disability, or microcephaly and/or additional features, at a tertiary care center on karyotyping or microarray analysis. Seven were isolated duplications, and one child had an additional smaller pathogenic deletion. Thus, duplication syndromes can have milder presentations with spectrum of dysmorphism, behavioral problems, and intellectual disability, but it is possible to diagnose easily with latest emerging high-throughput technologies.


Assuntos
Deficiência Intelectual , Microcefalia , Criança , Humanos , Duplicação Cromossômica/genética , Microcefalia/genética , Deficiência Intelectual/genética , Pesquisa , Deleção Cromossômica , Síndrome
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1425-1429, 2023 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-37906154

RESUMO

OBJECTIVE: To carry out genetic analysis for a Chinese pedigree affected with intellectual disability and overgrowth due to a supernumerary marker chromosome (sSMC). METHODS: A pedigree which had presented at Jiaxing Maternity and Child Health Care Hospital on August 31, 2021 was selected as the study subject, for which chromosomal karyotyping, single nucleotide polymorphism-based microarray (SNP-array), and fluorescence in situ hybridization (FISH) were carried out in combination. RESULTS: SNP-array analysis showed that the proband and his sister had both harbored a 16.1 Mb duplication which encompassed the critical region of 15q26 overgrowth syndrome. FISH confirmed that the proband was 47,XX,+neo(15)(qter→q25.3:)mat, her mother was 47,XX,del(15)(q25.3:),+neo(15)(qter→q25.3:), whilst her father was normal. CONCLUSION: Application of multiple genetic techniques has facilitated delineation of the origin of sSMC and reliable genetic counseling for this pedigree.


Assuntos
Duplicação Cromossômica , Cromossomos , População do Leste Asiático , Deficiência Intelectual , Feminino , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Linhagem , Polimorfismo de Nucleotídeo Único , Deficiência Intelectual/genética , Duplicação Cromossômica/genética , Masculino
4.
Zhonghua Fu Chan Ke Za Zhi ; 58(8): 565-575, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37599253

RESUMO

After the promulgation of the first edition of expert consensus on the application of chromosomal microarray analysis (CMA) technology in prenatal diagnosis in 2014, after 8 years of clinical and technical development, CMA technology has become a first-line diagnosis technology for fetal chromosome copy number deletion or duplication abnormalities, and is widely used in the field of prenatal diagnosis in China. However, with the development of the industry and the accumulation of experience in case diagnosis, the application of CMA technology in many important aspects of prenatal diagnosis, such as clinical diagnosis testimony, data analysis and genetic counseling before and after testing, needs to be further standardized and improved, so as to make the application of CMA technology more in line with clinical needs. The revision of the guideline was led by the National Prenatal Diagnostic Technical Expert Group, and several prenatal diagnostic institutions such as Peking Union Medical College Hospital were commissioned to write, discuss and revise the first draft, which was discussed and reviewed by all the experts of the National Prenatal Diagnostic Technical Expert Group, and was finally formed after extensive review and revision. This guideline is aimed at the important aspects of the application of CMA technology in prenatal diagnosis and clinical diagnosis, from the clinical application of evidence, test quality control, data analysis and interpretation, diagnosis report writing, genetic counseling before and after testing and other work specifications are elaborated and introduced in detail. It fully reflects the integrated experience, professional thinking and guidance of the current Chinese expert team on the prenatal diagnosis application of CMA technology. The compilation of the guideline for the application of CMA technology in prenatal diagnosis will strive to promote the standardization and advancement of prenatal diagnosis of fetal chromosome diseases in China.


Assuntos
Aberrações Cromossômicas , Doenças Fetais , Aconselhamento Genético , Diagnóstico Pré-Natal , Feminino , Humanos , Gravidez , Povo Asiático , Deleção Cromossômica , Duplicação Cromossômica/genética , Variações do Número de Cópias de DNA/genética , Doenças Fetais/diagnóstico , Doenças Fetais/genética , Análise em Microsséries , Cuidado Pré-Natal , Guias de Prática Clínica como Assunto
5.
Genes (Basel) ; 14(7)2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37510238

RESUMO

17p13 is a chromosomal region characterized by genomic instability due to high gene density leading to multiple deletion and duplication events. 17p13.3 microduplication syndrome is a rare condition, reported only in 40 cases worldwide, which is found in the Miller-Dieker chromosomal region, presenting a wide range of phenotypic manifestations. Usually, the duplicated area is de novo and varies in size from 1.8 to 4.0 Mbp. Critical genes for this region are PAFAH1B1 (#601545), YWHAE (#605066), and CRK (#164762). 17p13.3 microduplication syndrome can be categorized into two classes (Class I and Class II) based on the genes that are present in the duplicated area, which lead to different phenotypes. In this report, we present a new case of Class I 17p13.3 microduplication syndrome that presents with unilateral sensorineural hearing loss. Oligonucleotide and SNP array comparative genomic hybridization (a-CGH) analysis revealed a duplication of approximately 121 Kbp on chromosome 17p13.3, which includes YWHAE and CRK genes. Whole-exome sequencing (WES) analysis confirmed the duplication. Our patient has common clinical symptoms of Class I 17p13.3 microduplication syndrome, and in addition, she has unilateral sensorineural hearing loss. Interestingly, WES analysis did not detect any mutations in genes that are associated with hearing loss. The above findings lead us to propose that hearing loss is a manifestation of 17p13.3 duplication syndrome.


Assuntos
Transtornos Cromossômicos , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Perda Auditiva Neurossensorial , Perda Auditiva Unilateral , Feminino , Humanos , Perda Auditiva Unilateral/genética , Hibridização Genômica Comparativa , Duplicação Cromossômica/genética , Transtornos Cromossômicos/genética , Deleção Cromossômica , Perda Auditiva Neurossensorial/genética
6.
Cytogenet Genome Res ; 163(1-2): 14-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497920

RESUMO

Chromosome 2p (chr2p) duplication, also known as trisomy 2p, is a rare chromosome abnormality associated with developmental delay, intellectual disability, behavioral problems, and distinctive facial features. Most of the reported cases involving trisomy 2p include additional copy number variants (CNVs) in other regions of the genome and are usually small in size. Little is known about the clinical outcomes of large duplications of chr2p as the sole cytogenetic abnormality. In this study, 193 samples at the Greenwood Genetic Center (GGC) with CNVs involving chr2p were evaluated, out of which 86 had chr2p duplications. Among them, 8 patients were identified with large chr2p duplications ranging in size from 9.3 Mb to 89 Mb, and no deletions or duplications involving other chromosomes were identified in those patients. These duplications were associated with inverted duplication, tandem duplication, and duplication as the result of translocation, with no additional CNVs identified by microarray analysis. Confirmation by conventional cytogenetics was performed in 7 of the 8 patients, and the translocations were confirmed by fluorescence in situ hybridization. Interestingly, 1 patient was found to have mosaic complete trisomy 2p as the result of an unbalanced de novo (X;2) chromosomal translocation. X-inactivation was skewed toward the derivative X chromosome, yet it did not appear to extend into the chromosome 2 material. Various shared clinical manifestations were observed in the individuals in this study, including developmental delay, hemifacial hypoplasia, cleft palate, and short stature, and they also have distinct features such as hypotonia, cerebellar hypogenesis, and corpus callosum agenesis, which might result from a gene dosage effect of the duplication. In conclusion, single-event large chr2p duplications can result from different mechanisms, including inverted or tandem duplications within chromosome 2, or translocations involving chromosome 2 and other chromosomes. Partial or complete trisomy 2p is commonly associated with developmental delay, and additional clinical features may be related to gene dosage effects.


Assuntos
Duplicação Cromossômica , Trissomia , Humanos , Hibridização in Situ Fluorescente , Trissomia/genética , Duplicação Cromossômica/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 2/genética , Translocação Genética
7.
Genet Med ; 25(1): 151-154, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36609147

RESUMO

PURPOSE: Recurrent 16p11.2 duplications produce a wide range of clinical outcomes with varying effects on cognition and social functioning. Family-based studies of copy number variants (CNVs) have revealed significant contributions of genomic background on variable expressivity. In this study, we measured the phenotypic effect of 16p11.2 duplications and quantified the modulating effect of familial background on cognitive and social outcomes. METHODS: Genomic and clinical data were ascertained from 41 probands with a 16p11.2 duplication and their first-degree relatives. Paired comparisons were completed to determine the duplication's effect on expected vs actual performance on standardized tests of intelligence (IQ) and social functioning (Social Responsiveness Scale-2). Intraclass correlations between relatives and probands were also calculated. RESULTS: Cognitive and social functioning were significantly lower among individuals with 16p11.2 duplications than their CNV-negative relatives, whereas intraclass correlations between the groups remained high for full-scale IQ and Social Responsiveness Scale-2 scores. CONCLUSION: The 16p11.2 duplication confers deleterious effects on cognition and social functioning, whereas familial background significantly influences phenotypic expression of these traits. Understanding variable expressivity in CNV disorders has implications for anticipatory clinical care, particularly for individuals who receive a genetic diagnosis at an early age, long before the full scope of manifestations becomes evident.


Assuntos
Deleção Cromossômica , Variações do Número de Cópias de DNA , Humanos , Variações do Número de Cópias de DNA/genética , Cognição , Fenótipo , Duplicação Cromossômica/genética
8.
Am J Med Genet A ; 191(3): 870-877, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36548033

RESUMO

Chromosomal band 17q12 is a gene-rich region flanked by segmental duplications, making the region prone to deletions and duplications via the non-allelic homologous recombination mechanism. While deletions cause a well-described disorder with a specific phenotype called renal cysts and diabetes mellitus, the phenotype caused by reciprocal duplications is less specific, primarily because of variable expressivity, and incomplete penetrance. We present an unusual family with four children carrying the 17q12 microduplication inherited from their clinically healthy mother, who was a carrier of both the duplication and, interestingly, also of an atypical deletion of the 17q12 region. The duplication was inherited from her diabetic father and the deletion from her diabetic mother who also suffered from a renal disorder. Clinical manifestations in the family were variable, but all children showed some degree of a neurodevelopmental disorder, such as epilepsy, intellectual disability, delayed speech development, or attention deficit disorder. The simultaneous occurrence of a deletion and duplication in the same chromosomal region in one family is very rare, and to our knowledge, individuals carrying both a deletion and a duplication of this region have never been described.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Feminino , Humanos , Deleção Cromossômica , República Tcheca , Anormalidades Múltiplas/genética , Fenótipo , Deficiência Intelectual/genética , Duplicação Cromossômica/genética
9.
Am J Med Genet A ; 191(2): 370-377, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322476

RESUMO

The 5p13 microduplication syndrome is a contiguous gene syndrome characterized by developmental delay intellectual disability, hypotonia, unusual facies with marked variability, mild limb anomalies, and in some cases brain malformations. The duplication ranges in size from 0.25 to 1.08 Mb and encompasses five genes (NIPBL, SLC1A3, CPLANE1, NUP155, and WDR70), of which NIPBL has been suggested to be the main dose sensitive gene. All patients with duplication of the complete NIPBL gene reported thus far have been de novo. Here, we report a 25-week-old male fetus with hypertelorism, wide and depressed nasal bridge, depressed nasal tip, low-set ears, clenched hands, flexion contracture of elbows, knees, and left wrist, and bilateral clubfeet, bowing and shortening of long bones and brain malformation of dorsal part of callosal body. The fetus had a 667 kb gain at 5p13.2 encompassing SLC1A3, NIPBL and exons 22-52 of CPLANE1. The microduplication was inherited from the healthy father, in whom no indication for mosaicism was detected. The family demonstrates that incomplete penetrance of 5p13 microduplication syndrome may occur which is important in genetic counseling of families with this entity.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Humanos , Masculino , Anormalidades Múltiplas/genética , Proteínas de Ciclo Celular/genética , Duplicação Cromossômica/genética , Pai , Feto , Deficiência Intelectual/genética , Mosaicismo
10.
Taiwan J Obstet Gynecol ; 61(6): 1044-1047, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36427971

RESUMO

OBJECTIVE: We present prenatal diagnosis and molecular cytogenetic characterization of a de novo duplication of 2q12.2→q13 encompassing MALL, NPHP1, RGPD6 and BUB1. CASE REPORT: A 36-year-old, primigravid woman underwent amniocentesis at 16 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XX,dup(2) (q12.2q13). Simultaneous array comparative genomic hybridization (aCGH) analysis revealed a 6.1-Mb 2q12.2q13 duplication. aCGH analysis of the parental bloods did not find such a duplication. Prenatal ultrasound was unremarkable. After genetic counseling, the parents decided to terminate the pregnancy at 21 weeks of gestation, and a 420-g female fetus was delivered with no gross abnormalities. Postnatal cytogenetic analysis of the umbilical cord confirmed the prenatal diagnosis. The parental karyotypes were normal. aCGH analysis of the umbilical cord revealed the result of arr [GRCh37 (hg19)] 2q12.2q13 (107, 132, 950-113,065,779) × 3.0 with a 2q12.2→q13 duplication encompassing 20 OMIM genes including MALL, NPHP1, RGPD6 and BUB1. Polymorphic DNA marker analysis of quantitative fluorescence polymerase chain reaction (QF-PCR) on the DNAs extracted from the umbilical cord and parental bloods confirmed a maternal origin of the duplication of 2q12.2→q13. CONCLUSION: Amniocentesis may incidentally detect a de novo chromosomal segmental duplication of maternal origin in the fetus. The genetic information acquired by molecular analyses such as aCGH and QF-PCR are useful for genetic counseling under such a circumstance.


Assuntos
Amniocentese , Diagnóstico Pré-Natal , Gravidez , Feminino , Humanos , Adulto , Hibridização Genômica Comparativa , Cariotipagem , Análise Citogenética , Duplicação Cromossômica/genética , DNA , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Serina-Treonina Quinases/genética
11.
Taiwan J Obstet Gynecol ; 61(4): 717-721, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35779929

RESUMO

OBJECTIVE: To report three families with chromosome 15q11q13 duplications. CASE REPORT: We report the prenatal diagnosis and genetic counseling of three 15q11q13 duplications. CONCLUSION: Chromosomal microdeletions and microduplications are difficult to be detected by conventional cytogenetics. With molecular genetic techniques including array-based methods, the number of reported cases has rapidly increased. An integration of prenatal ultrasound, NIPT, karyotype analysis, CMA and genetic counseling is helpful for the prenatal diagnosis of chromosomal microdeletions/microduplications.


Assuntos
Aconselhamento Genético , Diagnóstico Pré-Natal , Duplicação Cromossômica/genética , Análise Citogenética , Feminino , Humanos , Cariotipagem , Gravidez
12.
Am J Med Genet A ; 188(10): 2999-3008, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899837

RESUMO

Microduplication of the LCR22-A to LCR22-D region on chromosome 22q11.2 is a recurrent copy number variant found in clinical populations undergoing chromosomal microarray, and at lower frequency in controls. Often inherited, there is limited data on intellectual (IQ) and psychological functioning, particularly in those individuals ascertained through a family member rather than because of neurodevelopmental disorders. To investigate the range of cognitive-behavioral phenotypes associated with 22q11.2 duplication, we studied both probands and their non-proband carrier relatives. Twenty-two individuals with 22q11.2 duplication (10 probands, 12 non-proband carriers) were prospectively assessed with a battery of neuropsychological tests, physical examination, and medical record review. Assessment measures with standardized norms included IQ, academic, adaptive, psychiatric, behavioral, and social functioning. IQ and academic skills were within the average range, with a trend toward lower scores in probands versus non-probands. Adaptive skills were within age expectations. Prevalence of attention deficits (probands only) and anxiety (both groups) was high compared with norms. The prevalence of autism spectrum disorder was relatively low (5% of total sample). Assessment of both probands and non-probands with 22q11.2 duplication suggests that the phenotypic spectrum with respect to neurodevelopment overlaps significantly with the general population. IQ and academic abilities are in the average range for most of the individuals with 22q11.2 duplication in our study, regardless of ascertainment as a proband or non-proband relative. Symptoms of attention deficit and anxiety were identified, which require further study. Results of this study further clarify the phenotype of individuals with 22q11.2 duplication, and provides important information for genetic counseling regarding this recurrent copy number variant.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Síndrome de DiGeorge , Anormalidades Múltiplas/genética , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Par 22 , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Humanos
13.
Taiwan J Obstet Gynecol ; 61(3): 501-503, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35595445

RESUMO

OBJECTIVE: To report a prenatal diagnosis of int22h1/int22h2-mediated Xq28 duplication syndrome. CASE REPORT: Herein, we present the case of a 28-year-old female who had a previous ambiguous genitalia pregnancy without genetic abnormality that was terminated at 23+2 weeks of gestation. The fetus of the current pregnancy harbored a de novo copy number variation at the Xq recurrent region (int22h1/int22h2-flanked; including the RAB39B gene) with a 0.397 Mb microduplication. The literature suggests the clinical manifestation of int22h1/int22h2-mediated Xq28 duplication syndrome tends to show a milder clinical phenotype in females than males. Although the fetus in this case was female, taking into consideration the parents' age and culture, the family decided to terminate this pregnancy due to the genetic abnormality. CONCLUSION: Prenatally diagnosed de novo int22h-1/int22h-2-mediated Xq28 duplication syndrome exhibits variable phenotypic traits in female fetuses.


Assuntos
Cromossomos Humanos X , Transtornos do Desenvolvimento Sexual , Duplicação Cromossômica/genética , Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA , Transtornos do Desenvolvimento Sexual/genética , Feminino , Humanos , Masculino , Fenótipo , Gravidez , Diagnóstico Pré-Natal , Síndrome , Proteínas rab de Ligação ao GTP/genética
14.
Brain Dev ; 44(8): 562-566, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35469635

RESUMO

BACKGROUND: Chromosome 18q duplications are associated with a range of phenotypes often similar to complete trisomy 18, variably including poor growth, feeding difficulties, congenital malformations and dysmorphic facial features. Although 18q duplication patients may have seizures and developmental impairment, brain MRI typically shows only variable degrees of cerebral atrophy. PATIENT: We present a boy with a 52.2 Mb 18q duplication in whom brain MRI in the neonatal period showed striking white matter abnormalities, most notable in the frontal lobes. His clinical presentation was otherwise in keeping with trisomy 18, including characteristic facial features, hypotonia, cardiac malformation, rocker bottom feet, pectus excavatum, short and broad thumbs and halluces, and diabetes insipidus. CONCLUSION: Since not previously reported in association with 18q duplication, the observation of cerebral white matter anomalies is particularly interesting. This radiologic pattern is a well-recognized feature of 18q deletion syndrome, hypothesized by many to occur due to haploinsufficiency of MBP, the gene encoding myelin basic protein. The mechanisms leading to the white matter anomalies in this patient remain unexplained.


Assuntos
Substância Branca , Deleção Cromossômica , Duplicação Cromossômica/genética , Cromossomos , Cromossomos Humanos Par 18/genética , Humanos , Trissomia/genética , Síndrome da Trissomía do Cromossomo 18 , Substância Branca/diagnóstico por imagem
15.
Int J Dev Neurosci ; 82(4): 289-294, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35470466

RESUMO

The short arm of chromosome 16 and especially the region 16p13.11 is a chromosome region where many structural variants, especially deletions and duplications, can be observed. Although deletions of this region are clinically well defined, duplications are rare, and so far, there is no established clinical consensus in regard with its clinical picture, and especially the dysmorphic perspective of the disease is far from being clear. A 5-year-and-2-month-old patient who presented with epilepsy, autism and late speech onset complaints was evaluated in our genetics department. On physical examination, unilateral preauricular skin tag and upslanting palpebral fissures were noted. Microarray analysis was performed and reported as ([hg19]: 16p13.11 (14.897.804-16.730.375) x3). The literature review revealed only a few reports about the syndrome, but some dysmorphological findings appear to recur in different reports, which enables a possible characterization. Dysmorphic findings were discussed.


Assuntos
Duplicação Cromossômica , Epilepsia , Duplicação Cromossômica/genética , Epilepsia/genética , Humanos , Lactente , Fenótipo
16.
Cytogenet Genome Res ; 162(1-2): 40-45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139523

RESUMO

The 16p11.2 duplication is a well-known cause of developmental delay and autism, but there are only 2 previously reported cases of 16p11.2 triplication. Both of the previously reported cases exhibited tandem triplication on a 16p11.2 duplication inherited from 1 parent. We report fraternal twins presenting with developmental delay and 16p11.2 triplication resulting from inheritance of a 16p11.2 duplicated homolog from each parent. This report also reviews the overlapping features in previously published cases of 16p11.2 triplication, and possible implications are discussed.


Assuntos
Transtorno Autístico , Transtorno Autístico/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Par 16/genética , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Pais , Fenótipo
17.
JAMA Netw Open ; 5(1): e2141911, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982160

RESUMO

Importance: Newborn screening for Angelman syndrome (AS), Prader-Willi syndrome (PWS), and chromosome 15 duplication syndrome (Dup15q) may lead to benefit from early diagnosis and treatment. Objective: To examine the feasibility of newborn screening for these chromosome 15 imprinting disorders at population scale. Design, Setting, and Participants: In this diagnostic study, the validation data set for the first-tier SNRPN test, called methylation-specific quantitative melt analysis (MS-QMA), included 109 PWS, 48 AS, 9 Dup15q, and 1190 population control newborn blood spots (NBS) and peripheral tissue samples from participants recruited from January 2000 to December 2016. The test data set included NBS samples from 16 579 infants born in 2011. Infants with an NBS identified as positive for PWS, AS, or Dup15q by the first-tier test were referred for droplet digital polymerase chain reaction, real-time polymerase chain reaction, and low-coverage whole-genome sequencing for confirmatory testing. Data analyses were conducted between February 12, 2015, and August 15, 2020. Results: In the validation data set, the median age for the 77 patients with PWS was 3.00 years (IQR, 0.01-44.50 years); for the 46 patients with AS, 2.76 years (IQR, 0.028 to 49.00 years); and for the 9 patients with Dup15q, 4.00 years (IQR, 1.00 to 28.00 years). Thirty-eight patients (51.4%) in the PWS group, 20 patients (45.5%) in the AS group, and 6 patients (66.7%) in the Dup15q group who had sex reported were male. The validation data set showed MS-QMA sensitivity of 99.0% for PWS, 93.8% for AS, and 77.8% for Dup15q; specificity of 100% for PWS, AS, and Dup15q; positive predictive and negative predictive values of 100% for PWS and AS; and a positive predictive value of 87.5% and negative predictive value of 100% for Dup15q. In the test data set of NBS samples from 16 579 infants, 92 had a positive test result using a methylation ratio cut-off of 3 standard deviations from the mean. Of these patients, 2 were confirmed to have PWS; 2, AS; and 1, maternal Dup15q. With the use of more conservative PWS- and AS-specific thresholds for positive calls from the validation data set, 9 positive NBS results were identified by MS-QMA in this cohort. The 2 PWS and 2 AS calls were confirmed by second-tier testing, but the 1 Dup15q case was not confirmed. Together, these results provided prevalence estimates of 1 in 8290 for both AS and PWS and 1 in 16 579 for maternal Dup15q, with positive predictive values for first-tier testing at 67.0% for AS, 33.0% for PWS, and 44.0% for combined detection of chromosome 15 imprinting disorders for the validation data set. Conclusions and Relevance: The findings of this diagnostic study suggest that it is feasible to screen for all chromosome 15 imprinting disorders using SNRPN methylation analysis, with 5 individuals identified with these disorders out of 16 579 infants screened.


Assuntos
Síndrome de Angelman , Cromossomos Humanos Par 15/genética , Testes Genéticos/métodos , Triagem Neonatal/métodos , Síndrome de Prader-Willi , Adolescente , Adulto , Síndrome de Angelman/diagnóstico , Síndrome de Angelman/genética , Criança , Pré-Escolar , Duplicação Cromossômica/genética , Metilação de DNA/genética , Estudos de Viabilidade , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Adulto Jovem
18.
Eur J Med Genet ; 65(2): 104422, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026468

RESUMO

The 22q11 region is prone to generating recurring Copy Number Variations (CNVs) as a result of the large numbers of Low Copy Repeats (LCRs). Typical duplications encompass the LCR-A-to-D region but atypical duplications of various sizes have also been reported. These duplications are responsible for highly variable phenotypes with incomplete penetrance and expressivity, which is challenging for adequate genetic counselling, especially in the prenatal period. To better delineate prenatal phenotypes associated with these CNVs, we report here a clinical and molecular description of twelve cases (9 foetuses and 3 deceased new-borns babies) carrying recurrent 22q11 duplications (diagnosed via aCGH), along with a review of the existing literature. 22q11 duplications were inherited from an apparently healthy parent in almost 60% of the cases. Other CNVs were diagnosed for 8% of the cases. Increased nuchal translucency and cardiac anomalies (CHD) were the most prominent phenotypes observed, along with mild renal and skeletal anomalies. Duplications encompassing the LCR-C-to-D region (and the CRKL gene) seemed more likely to generate CHDs and renal malformations. Cleft lip/palate were observed in foetuses with duplications encompassing the LCR-A-to-B region or the SPECC1L gene, as previously suggested. However, genotype-phenotype correlations remain difficult to ascertain. Second-hit point variants, epigenetic or environmental variations could play a role in the phenotypic variability of 22q11 duplications, but remain a challenge for assessment in the short period of pregnancy.


Assuntos
Anormalidades Múltiplas/genética , Duplicação Cromossômica/genética , Síndrome de DiGeorge/genética , Feto/patologia , Fenótipo , Anormalidades Múltiplas/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/patologia , Feminino , Humanos , Recém-Nascido , Masculino , Fosfoproteínas/genética
19.
Am J Med Genet A ; 188(3): 779-787, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34845825

RESUMO

22q11.2 duplication syndrome has a frequency of ~1/700 in the intellectual disability population. Despite this frequency, there is limited information on the variable clinical presentation. Although the phenotype and incidence of congenital anomalies are well described for 22q11.2 deletion syndrome, they are not as well understood for individuals with 22q11.2 duplication syndrome. This study is a single-center, retrospective review of patients diagnosed with 22q11.2 duplication syndrome designed to categorize the variable phenotype seen in these individuals. The data suggest that the incidence of congenital anomalies may be higher than previously reported for this syndrome. Affected individuals are at increased risk for a variety of problems including gastrointestinal complications, endocrine dysfunction, ophthalmologic abnormalities, palatal anomalies, congenital heart disease, musculoskeletal differences, and neurologic abnormalities. Individuals with 22q11.2 duplication syndrome would benefit from care coordinated by a multidisciplinary team and managed according to the 22q11.2 deletion syndrome guidelines.


Assuntos
Anormalidades Múltiplas , Síndrome de DiGeorge , Cardiopatias Congênitas , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Deleção Cromossômica , Duplicação Cromossômica/genética , Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Cardiopatias Congênitas/genética , Humanos , Fenótipo
20.
Am J Med Genet A ; 188(1): 46-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34491614

RESUMO

Duplications on Chromosome 22q11.2 (22q11.2 dup) are associated with a wide spectrum of physical and neurodevelopmental features. In this chart review, physical, developmental, and behavioral features of 28 patients with 22q11.2 dup (median age = 17.11 years) are reported, and phenotypes of de novo and inherited duplications are compared. Common medical anomalies include nutritional problems (57%), failure to thrive (33%), transient hearing impairment (52%), and congenital heart defects (33%). Developmental, speech-language, and motor delay are common in infancy, while attention (64%), learning (60%), and motor problems (52%) are typically reported at primary school age. Attention-deficit/hyperactivity disorders are diagnosed in 44%. Median full-scale intelligence quotient is in the borderline range (IQ 76), with one-fifth of patients having mild intellectual disability. Longitudinal data in 11 patients, with the first assessment at a median age of 5.2 years and the second assessment at a median age of 8.8 years, indicate that almost two-third of patients have a relative stable cognitive trajectory, whereas one-third show a growing into deficit profile. In patients with de novo duplications, there is a trend of more failure to thrive, while more patients with inherited duplications follow special education.


Assuntos
Anormalidades Múltiplas , Síndrome de DiGeorge , Anormalidades Múltiplas/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Par 22 , Estudos Transversais , Síndrome de DiGeorge/complicações , Humanos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...